
36 The Delphi Magazine Issue 37

Dynamic Arrays
by Brian Long

Delphi, Borland Pascal and
Turbo Pascal before it have

always supported arrays: conven-
ient storage structures for holding
many values of a specified data
type. However, they have always
been, rather irritatingly for some,
fixed size entities. You always had
to know how many elements you
would need or, if you didn’t know
in advance, you were obliged to
overestimate.

I’ll grant you that these days the
business of over-estimation of data
requirements might not seem like
too much of a problem, what with
multi-megabytes of memory being
the norm, but in the days of Delphi
1 and before memory was rather
more scarce.

Of course, I’m aware that state-
ments such as that just made are
hardly future-proofed (yeah, we all
hear the stories of the good old
days when one kilobyte was a
luxury, and 64Kb was deemed to be
more than enough for anyone,
don’t we?), but you get the point.

Over the years, various tech-
niques have evolved to counter
this restriction of static arrays, to
provide mechanisms for support-
ing dynamic arrays in one way or
another. Some of these have
involved using pointers and
dynamic memory management. In
this article, I am going to be looking
at some of these dynamic array
mechanisms, hopefully to give you
some ideas that you can use in
your own application develop-
ments.

The examples presented here,
whilst not tremendously exciting
in comparison to some of the
inventive scenarios portrayed in
some Delphi books, will hopefully
be sufficient to show the syntax
required to do the job in hand. In all
cases, the dynamic arrays will have
Integer elements. Integer, remem-
ber, is a generic type. That means it
changes, depending upon the
underlying operating system’s
native integer size.

So, in Delphi 1, Integer is a 16-bit
signed integer, with a range of
-32,768 (-32k or -215) to 32,767 (32k-1
or 215-1). Delphi 2, 3 and 4, being
32-bit development systems,
define Integer to be the same as a
Longint, -2,147,483,648 (-2G or -231)
to 2,147,483,647 (2G-1 or 231-1). In
the dim and distant future when we
have a version of Delphi for 64-bit
Windows systems, Integer will be
defined in terms of Delphi 4’s Int64
type, for example from
-9,223,372,036,854,775,808 (-8E or
-263) to 9,223,372,036,854,775,807
(8E-1 or 263-1).

Heap-Based Array
The first approach involves using
dynamic memory management
routines to allocate the array on
the heap. A normally declared
array of a fixed size will reside
either in the global data segment,
or on the stack (if it is a local vari-
able). This is true of all variables
declared in var statements or
declared as typed constants. When
you manually allocate the storage
for a variable with the dynamic
allocation routines, the space
comes from your program’s heap.
We can allocate as much space as
we decide our array requires at
runtime.

To get this idea off the ground,
we need to realise that heap alloca-
tions tend to imply pointers, so we
will be forced to use that arguably

unpleasant pointer notation.
Having got past that point (pun
unintended), we can define some
types. Since we don’t know how
many elements our array will
require, the array type can be
defined with as few elements as we
can get away with (which turns out
to be one). We also define a pointer
type to point to such an array as
per Listing 1, and we are nearly
there. Notice that I have chosen to
define array using element 0. This
is an arbitrary choice: I can use
element 1 if I wish to.

I still find it interesting that when
defining some type (say TInteger-
Array), and a pointer type that will
point to it (say PIntegerArray), you
can define the pointer type first.
The compiler is happy to let you
refer to the TIntegerArray even
though it has not been defined at
that stage. But then again, strange
things interest me that everyone
else typically finds very dull.

The next step is to realise that if
we declare a variable of the array
pointer type we can then allocate
as much memory as we like for it to
point to. If we explicitly turn off the
compiler’s range checking code,
then we can access any valid
element in the array with appropri-
ate pointer de-referencing, so long
as we don’t use any constant
expressions. If we were to do that
the compiler would object at
compile-time, spotting the conflict

type
PIntegerArray = ^TIntegerArray;
TIntegerArray = array[0..0] of Integer;

➤ Listing 1

var
MyArray: PIntegerArray;
Loop: Integer;

...
MyArray := AllocMem(DesiredSize * SizeOf(Integer));
{$R-} { Disable range-checking for now }
for Loop := 0 to Pred(DesiredSize) do
MyArray^[Loop] := Loop;

...
FreeMem(MyArray, DesiredSize * SizeOf(Integer));

➤ Listing 2

September 1998 The Delphi Magazine 37

{$ifdef Win32}
ReallocMem(MyArray, NewSize * SizeOf(Integer));
if NewSize > DesiredSize then
FillChar(MyArray^[DesiredSize], (NewSize-DesiredSize) * SizeOf(Integer), 0);

{$else}
MyArray := ReallocMem(MyArray, DesiredSize * SizeOf(Integer),
NewSize * SizeOf(Integer));

{$endif}

➤ Listing 3

➤ Top: Figure 1

➤ Bottom: Figure 2

between the element number and
the array type defined to only have
one element. Listing 2 shows this.
Notice that range-checking is
turned off with a {$R-} compiler
directive. In Delphi 2 onwards you
can alternatively use the more
descriptive {$RangeChecks Off}.

To allocate memory for the array
you can use either GetMem or
AllocMem. The only difference
between them is that GetMem leaves
the allocated memory block in an
undefined state whereas AllocMem
zero-fills it, leaving integers sensi-
bly initialised to zero. Freeing the
memory block is the responsibility
of FreeMem. In Delphi 1, the second
FreeMemparameter was mandatory,
but in 32-bit Delphi it is optional
(since we wish to free exactly the
same amount as we allocated in the
first place).

Whilst on the subject of 32-bit
Delphi, I bent the truth a little ear-
lier. When I said that because we
were using dynamic memory man-
agement we were forced to use
pointer notation, this is not strictly
true from Delphi 2 onwards. The
expression MyArray^[Loop] can in
fact be written as MyArray[Loop]
and the compiler will assume you
wish to dereference the MyArray
pointer. But since Delphi 1 doesn’t
support this convenience mecha-
nism I shall continue to use the ^
symbol (called a caret, circumflex,
or sometimes simply a hat).

If you wish to resize your array
after it has been allocated, you can
call ReallocMem. This routine
changed quite a lot between Delphi
1 and 2 and so some conditional
compilation may be necessary to
keep your code version-
independent. ReallocMem started
life as a function that took three
parameters, including the old
memory block size and the new
size. These days it is a procedure
that doesn’t need to be told how

big the memory block is, it
works that out for itself.

As well as the simple
syntax change (see Listing
3), the semantics are
slightly different as well. If
you reallocate your array
and make it larger, Delphi
1’s ReallocMem (from the
SysUtils unit, where
AllocMem lives) leaves all
the new elements initial-
ised with zero bytes. On
the other hand, the 32-bit
ReallocMem (from the
System unit, where GetMem
and FreeMem come from)
leaves the extra memory
with undefined values. If
you want to leave all the
new elements nicely ini-
tialised in 32-bit pro-
grams, you can call FillChar
straight after the ReallocMem.

To test this idea out, a sample
project Array1.Dpr is on this
month’s disk. When the project
starts it asks you how many ele-
ments to create in the array (see
Figure 1). The array is created,
each element is filled with a simple
value (the element number, as in
Listing 2) and displayed in a listbox
(Figure 2). There are two buttons
on the form, one of which allows
you to resize the array. It asks how
many elements you would like to
resize it to, and then calls Real-
locMem to do the job. The listbox’s
view of the array contents is then
refreshed. The second button
refills the array with dummy values
(remember if you make the array
grow in size, some elements will
simply have a value of zero) and
redisplays the array in the listbox.

Nearly all the other sample proj-
ects, which implement dynamic

arrays in various other ways,
mimic this project’s functionality
and user interface.

Heap-Based Array #2
A slight variation on the heap-
based array allows you to leave
range-checking on if you so wish.
Instead of defining an array with
one element, you can define an
array with the maximum number
of elements. Again, you only
allocate memory for as many of
them as are required at that time.
The only difference in the coding
approach as described by Listings
1, 2 and 3 is the type section. So
with this method Listing 1
becomes Listing 4.

In 16-bit applications, the largest
data structure that can be manipu-
lated without added complica-
tions (such as selector tiling) is
just under 64Kb. In 32-bit pro-
grams the limit is just under 2Gb.
Listing 4 shows how to compute
the largest number of elements
you can have in your array on
either platform. Again, the fact that
my array starts at element 0 is my
choice. I could start at element 1,
or even 10 if I wanted.

So range-checking can now be
left on, and you can also use con-
stant expressions to access the

38 The Delphi Magazine Issue 37

const
{$ifdef Win32}
MaxSize = 2147483647 div SizeOf(Integer);

{$else}
MaxSize = 65535 div SizeOf(Integer);

{$endif}
type
PIntegerArray = ^TIntegerArray;
TIntegerArray = array[0..Pred(MaxSize)] of Integer;

➤ Listing 4

procedure TArray2MainForm.btnResizeArrayClick(Sender: TObject);
var Tmp: Integer;
begin
Tmp := StrToInt(InputBox('Enter your new array dimensions',
'Number of elements:', '20'));

if Tmp > MaxSize then
raise Exception.Create('Array too big');

{$ifdef Win32}
ReallocMem(MyArray, Tmp * SizeOf(Integer));
if Tmp > SizeOfMyArray then
FillChar(MyArray^[SizeOfMyArray], (Tmp-SizeOfMyArray) * SizeOf(Integer), 0);

{$else}
MyArray := ReallocMem(MyArray, SizeOfMyArray * SizeOf(Integer),
Tmp * SizeOf(Integer));

{$endif}
SizeOfMyArray := Tmp;
DisplayArray

end;

➤ Listing 5

MyArray: TList;
...
procedure TArray3MainForm.FormCreate(Sender: TObject);
begin
MyArray := TList.Create;
MyArray.Count := StrToInt(InputBox('Enter your array
dimensions', 'Number of elements:', '10'));

btnFillArray.Click; {Pretend to push array filling button}
DisplayArray

end;
procedure TArray3MainForm.FormDestroy(Sender: TObject);
begin
MyArray.Free;
MyArray := nil

end;
procedure TArray3MainForm.btnResizeArrayClick(
Sender: TObject);

begin
MyArray.Count := StrToInt(InputBox(
'Enter your new array dimensions',
'Number of elements:', '20'));

DisplayArray
end;

procedure TArray3MainForm.btnFillArrayClick(
Sender: TObject);

var Loop: Integer;
begin
for Loop := 0 to Pred(MyArray.Count) do
MyArray[Loop] := Pointer(Loop);

DisplayArray
end;
procedure TArray1MainForm.DisplayArray;
var Loop: Integer;
begin
with ListBox1, Items do begin
BeginUpdate;
try
Clear;
for Loop := 0 to Pred(SizeOfMyArray) do
Add(IntToStr(MyArray^[Loop]));

ItemIndex := Pred(SizeOfMyArray)
finally
EndUpdate

end
end

end;

➤ Listing 6

array elements. If you allocate five
elements, you can quite validly
refer to MyArray^[0], MyArray^[1],
..., MyArray^[4] (remember this
syntax would not compile with the
previous approach). However, if
you programmatically try to
access the sixth element (MyAr-
ray^[5]), you will have a problem.
The compiler will allow this invalid
action because element six
appears valid to the compiler
based upon the type definition. It’s
down to you to make sure you
don’t try anything so silly.

Array2.Dpr on the disk acts
exactly the same as Array1.Dpr,
but uses this modified form of
array declaration. Also, before any
memory allocation or reallocation,

the target size is checked to see if it
is less than the calculated maxi-
mum size. If it is bigger, an excep-
tion is raised. Listing 5 shows the
event handler that is triggered
when the array resize button is
pressed.

TList
The next possibility on my list is
a..., well, a list. A TList to be pre-
cise. A TList is designed to repre-
sent a list of pointers. These
pointers can refer to objects,
allocated memory blocks or what-
ever you like. The pointers are
accessed through the Items array
property. However, since Items is
the default array property, you can
treat the list itself like an array. So

these two statements would be
identical:

MyList.Items[0] := nil;
MyList[0] := nil;

Items can be added to the list as
you like, by using its Add method.
This increments the Count prop-
erty. But to treat a list more like a
dynamic array (as opposed to a
list), you can set the Countproperty
directly, to dictate how many ele-
ments are accessible. Then you
can simply use the Items array
property to access them. Ignoring
Add, Delete, Pack, Expand means that
Count will only be changed explic-
itly by your code, and the values of
the list elements won’t be shuffled
around behind the scenes.

A TList is implemented by way of
a heap-based array as discussed
previously. If you want to access
that array directly, you can use the
List property, but each element in
the array is still a pointer. In many
cases, using pointers in the list to
point to other dynamically (or
statically) allocated variables is
fine. But the example used here
wants to store simple integers. The
List Of Numbers entry in last issue’s
Delphi Clinic explains how to use
TLists to store integers by under-
standing that a pointer takes four
bytes. An integer is either two or
four bytes (depending which ver-
sion of Delphi you are using). So
the space taken by the pointer can
be used to store an integer value
(using an appropriate typecast).
Additionally, the default TList item

September 1998 The Delphi Magazine 39

value of nil, when typecast to an
integer, conveniently gives us a
sensible default value of 0.

Array3.Dpr re-implements the
same dynamic array example pro-
gram using a TList. Listing 6 shows
some bits of code from the project.
You can see that resizing the array
is simple; assign a new value to
Count. Also you can see the type-
casting of integer to and from
pointer to get values in and out of
the TList’s elements.

Class With Default
Array Property
The trouble with the TList
approach is the constant need for
typecasting. Since it was the inclu-
sion of an array property marked
with the default directive in the
TList class that allowed us to treat
it syntactically like an array, then
there is nothing stopping us defin-
ing our own class with a default
array property. We can use any
internal storage mechanism we
like and the class will act just like a
dynamic array, with the exception
of a call to the constructor to ini-
tialise it and to its Free method to
destroy it.

The two projects Array4.Dpr and
Array5.Dpr implement such
classes. Array4’s class uses a heap
based array whereas Array5 makes
it easy for itself by using a TList
again. Effectively the class in this
project simply hides the TList
typecasting from the user. Listing 7
shows the extent of this latter
integer array class. Quite simple I
hope you agree. Listing 8 has some

type
TIntegerArray = class
private
FElements: TList;
function GetElement(Index: Integer): Integer;
procedure SetElement(Index: Integer; const Value:
Integer);

function GetSize: Integer;
procedure SetSize(const Value: Integer);

public
constructor Create(ArraySize: Integer);
destructor Destroy; override;
property Element[Index: Integer]: Integer
read GetElement write SetElement; default;

property Size: Integer read GetSize write SetSize;
end; { TIntegerArray }

constructor TIntegerArray.Create(ArraySize: Integer);
begin
inherited Create;
FElements := TList.Create;
FElements.Count := ArraySize

end;
destructor TIntegerArray.Destroy;

begin
FElements.Free;
FElements := nil;
inherited Destroy

end;
function TIntegerArray.GetElement(Index: Integer): Integer;
begin
Result := Integer(FElements[Index])

end;
procedure TIntegerArray.SetElement(Index: Integer;
const Value: Integer);

begin
FElements[Index] := Pointer(Value)

end;
function TIntegerArray.GetSize: Integer;
begin
Result := FElements.Count

end;
procedure TIntegerArray.SetSize(const Value: Integer);
begin
FElements.Count := Value

end;

(frankly pretty senseless) code to
show how the class works.

Back in Issue 4, in the Tips &
Tricks section, I provided a Delphi 1
class that mimicked an array in a
not too dissimilar way. Its purpose
was to allow you to get an array
that could occupy more than 64Kb
of memory (the largest single
structure size in a Delphi 1 app).
The implementation of that class
was somewhat more involved as it
required Windows APIs to allocate
larger blocks of memory, and then
the use of selector tiling to jump
from one 64Kb segment to another.
That particular example did not
support resizing.

Dynamic Arrays
For Paradox People
If you use the term ‘dynamic array’
to a Paradox for Windows person,
it tends to conjure up specific ideas
in their mind. In Paradox, a DynAr-
ray is a dynamic array but with a
distinct difference to those that we
have seen so far.

The elements of a DynArray are
indexed not by integers, as with
fixed-size Paradox arrays and all
the Pascal arrays we have seen so
far are (see box-out for more
details). Instead they are indexed
by strings. In Delphi syntax, this
means that instead of writing:

MyArray[0] := 100;

you could say:

MyArray[‘Hello World’] := 100;

Our next implementation is going
to try and emulate this behaviour.

TStringList
The TStrings class, as used by
TListBox, TMemo, TQuery, TComboBox,
TRadioGroup etc, is an abstract
class with various descendant
classes implemented in different
ways by these components. The
generally useful class inherited
from TStrings is TStringList. This
class manages a collection of
strings in memory, where each
string can have a pointer associ-
ated with it.

In many ways, a TStringList is
quite like a TList in that it has a
default array property although it
is called Strings, and gives access
to the contained strings. The point-
ers are stored in another array
property called Objects. However
there is a prime difference between
it and a TList, which is that you
cannot write to a TStringList’s
Count property to resize it. Gener-
ally, the string list only grows when
you explicitly add a new string to it.

There is yet another array prop-
erty of a string list that gives us an
alternative way of handling the
beast. The Values array property
was added to help when working
with the contents of INI files or the
parameter settings of TDatabase
objects. In those scenarios you
often deal with strings of the
format:

var
MyArray: TIntegerArray;

...
MyArray := TIntegerArray.Create(1);
MyArray[0] := 100;
MyArray.Size := 2;
MyArray[1] := 101;
MyArray.Free

➤ Listing 8

➤ Listing 7

40 The Delphi Magazine Issue 37

Name=Value

for example:

SERVER NAME=D:\IBData\Employee.GDB

In the case of this string, it is con-
sidered to represent a string with a
name part of SERVER NAME and a
value part of D:\IBData\Employee.
GDB. The Values array property is a
convenient mechanism for either
reading or writing a value associ-

ated with a given name. When you
use this array property, you pass in
a string as the array index. If you
are reading, Values returns the
value part if a string with the speci-
fied name part exists, otherwise it
returns an empty string. If you are
writing, it either updates a string
that has the specified name part or
creates a new string. So if a string
list called List is empty, this line
will ensure a string as listed above
will exist in the string list:

List.Values[‘SERVER NAME’] :=
‘D:\IBData\Employee.GDB’;

To work, the string list has to do a
lot of string searches and so this
approach is never going to be the
most efficient storage mechanism
in the world, but for small data
collections, where indexing by
strings is required, it may be a
convenient approach.

Array6.Dpr implements another
dynamic array class that works by
way of a TStringList. Since the
array needs to store integers, the
class converts to and from strings
to fit the requirements of a string
list. Since this is a slightly different
example, the form this time lets
you enter a string index and either
give it an integer value or obtain its
current value. As you set new
values for various array elements,
the contents of the string list are
displayed in a listbox so you can
see the internal data representa-
tion (see Figure 3).

Again, just to emphasise, if the
string list represented in Figure 3 is
called List, then the value of
List.Values[‘This Issue’] is the
string value ’37’. However Array6
implements a dynamic array class
called TIntegerArray (as they all
are in these examples). An object
called MyArray is declared of that
type, and so MyArray[‘This Issue’]
has an integer value of 37.

Variant Array
And now onto the next possible
implementation of a dynamic
array. We will leave these classes
with default array properties
behind now. We will also leave
Delphi 1 programmers behind.
Everything shown so far works in
all versions of Delphi. This section
only works in 32-bit Delphi (and
the next section only works with
the new Delphi 4!).

A Variant is a type-unsafe vari-
able, a variable that can be
assigned values of many different
types. A Variant can also hold a ref-
erence to an Automation server
and be used to call that server’s
exposed methods and access its
properties in a late-bound fashion.
It was added to Delphi 2 primarily
to support Automation because

Non-Integer Array Index Types
Many people seem to be under the impression that static arrays need to have
their elements indexed by integer numbers. This is a false impression. The
syntax in the Delphi help file defines a non-dynamic array type as:

array[indexType1, ..., indexTypen] of baseType

where each indexType is an ordinal type whose range does not exceed 2Gb in
32-bit or 64Kb in 16-bit programs. So the index type must be ordinal. This
means the index elements can be Integer, Byte, Word, Cardinal, Smallint,
and Shortint. Okay, so array index numbers 1 to 127 fit into any of those
types. But also valid are types Char, Boolean and any enumerated type. Also
any subrange type is valid. In fact, an array declared like this:

MyArray: array[1..10] of Byte;

is using a subrange type as the index specifier. Because of the syntax, if you
wanted to declare a 256 element array, given the definitions of Shortint,
Byte and Char, you could use any of these definitions:

Array1: array[0..255] of Byte;
Array2: array[Byte] of Byte; {Byte is a range of values from 0 to 255 }

Array3: array[-128..127] of Byte;
Array4: array[Shortint] of Byte;
{Shortint is a range of values from -128 to 127 }

Array5: array[#0..#255] of Byte;
Array6: array[Char] of Byte;
{Char is a range of values from #0 to #255 }

The elements of the last two arrays can be accessed not by numbers, but by
single characters, eg Array6[‘A’]. The final example here, to get you into the
idea involves a two-element array whose elements are accessed by a Boolean
value. Examples of such an array can be declared in either of these two ways:

Array1: array[False..True] of String;
Array2: array[Boolean] of String; {Boolean is a range of values
from False to True}

These arrays’ elements can be accessed using any Boolean expressions, so for
example:

const
Captions: array[Boolean] of String = (‘Disabled’, ‘Enabled’);

...
Label1.Caption := Captions[Edit1.Enabled];

42 The Delphi Magazine Issue 37

Automation in Windows makes
good use of variants.

It is common to see variants
being assigned simple values, such
as an integer or a TDateTime, but
variants can also contain arrays. A
variant array (not to be confused
with an array of variants) can be
set up where each element is of a
specified type (which can include
the Variant type, thereby allowing
heterogeneous arrays: arrays
whose elements can be of differing
types).

Array7.Dpr is the same example
as Array1.Dpr to Array5.Dpr but
implemented via variant arrays.
Listing 9 is much the same as List-
ing 6, but contains variant array
code instead.

The help stresses that variant
arrays are slower and bulkier than
standard Object Pascal arrays and
should only be used in special cir-
cumstances. A good reason for
using variant arrays is if you wish
to exchange non-standard informa-
tion between two applications,
particularly between an Automa-
tion client and server application.
If you make a variant array of bytes
and plug your data in, you can send
it across the process boundary
with no problem.

If you are looking to use variant
arrays, make sure you read up on
the VarArrayLock and VarArrayUn-
lock routines that allow more effi-
cient access to the contents of
certain variant arrays (those
whose elements are defined to be
of type Integer, Bool, String, Byte
or Float).

MyArray: Variant;
...
procedure TArray7MainForm.FormCreate(Sender: TObject);
var Tmp: Integer;
begin
Tmp := StrToInt(InputBox('Enter your array dimensions',
'Number of elements:', '10'));

MyArray := VarArrayCreate([0, Pred(Tmp)], varInteger);
btnFillArray.Click; { Pretend to push array filling button }
DisplayArray

end;
procedure TArray7MainForm.btnResizeArrayClick(
Sender: TObject);

var Tmp: Integer;
begin
Tmp := StrToInt(InputBox(
'Enter your new array dimensions',
'Number of elements:', '20'));

VarArrayRedim(MyArray, Pred(Tmp));
DisplayArray

end;
procedure TArray7MainForm.btnFillArrayClick(
Sender: TObject);

var Loop: Integer;
begin
for Loop := VarArrayLowBound(MyArray, 1) to
VarArrayHighBound(MyArray, 1) do
MyArray[Loop] := Loop;

DisplayArray
end;
procedure TArray7MainForm.DisplayArray;
var Loop: Integer;
begin
with ListBox1, Items do begin
BeginUpdate;
try
Clear;
for Loop := VarArrayLowBound(MyArray, 1) to
VarArrayHighBound(MyArray, 1) do
Add(IntToStr(MyArray[Loop]));

ItemIndex := VarArrayHighBound(MyArray, 1)
finally
EndUpdate

end
end

end;

Incidentally, the
MIDAS technology
available in Delphi 3
and 4 Client/Server
Suite uses variant
arrays to send data-
base data between the
client and server appli-
cations in exactly the
manner described.

Delphi 4
Dynamic Arrays
The approaches to
implementing dynamic
arrays so far are all rea-
sonably well known in
various circles and many Delphi
developers have employed these
general techniques over the years.
Delphi 4 introduces another option
as now dynamic arrays are part of
the language. Of course, this is of
no use to those who are stubbornly
refusing to upgrade because they
feel that the cost of the upgrade,
only one year after Delphi 3’s
release, is not worthwhile. But for
those who have taken the plunge
(or who are thinking of jumping in),
we will press on.

To declare a dynamic array, you
use similar syntax to an open array
subroutine parameter. For exam-
ple to declare a dynamic integer
array you could use:

MyArray: array of Integer;

The underlying array implementa-
tion is modelled on that of huge
strings. The arrays themselves are
allocated on the heap, and also
resized by a call to SetLength
(which was originally designed for

strings) and sections of an array
can be copied using Copy (also
applicable to strings). Length tells
you how many elements are in the
array, and you can use the High and
Low functions to return the highest
and lowest element index respec-
tively. So to set up this array you
could use:

SetLength(MyArray, 1);
MyArray[0] := 100;
SetLength(MyArray, 2);
MyArray[1] := 101;

To declare a multidimensional
dynamic arrays, you just extend
the syntax. So a two-dimensional
dynamic array can be declared
like:

MyArray: array of array of
Integer;

SetLength is still used to allocate
space for the array, but you can

➤ Listing 9

➤ Figure 3

September 1998 The Delphi Magazine 43

use additional parameters for the
extra dimensions, eg:

SetLength(MyArray, 2, 2);

for a 2 by 2 array. You can even
allocate the size of each dimension
individually to get uneven multi-
dimensional arrays. For example:

SetLength(MyArray, 2);
SetLength(MyArray[0], 3);
SetLength(MyArray[1], 4);

This generates an array with two
rows where the first row has three
columns, but the second has four.

The sample Array8.Dpr uses
Delphi 4 dynamic arrays to

reproduce most of the previous
examples.

Final word
There is clearly a whole number of
choices for implementing dynamic
arrays. Some are less efficient than
others, but offer certain benefits
like ease of use, or string indexing.
Also, if you wish to get information
out of COM objects then variant
arrays should be given special con-
sideration.

I’ll leave you to play with the
eight examples on the disk.

Brian Long is an independent
consultant and trainer. You can
reach him at brian@blong.com

Copyright @ 1998 Brian Long
All rights reserved.

Visit our website:
www.itecuk.com

	Heap-Based Array
	Heap-Based Array #2
	TList
	Class With Default Array Property
	Dynamic Arrays For Paradox People
	TStringList
	Non-Integer Array Index Types
	Variant Array
	Delphi 4 Dynamic Arrays
	Final word

